2The Microkernel

2Introduction

3Interprocess communication

3IPC via messages

3Message-passing primitives

4Process synchronization

5Blocked states

5Using Send(), Receive(), and Reply()

6Send()

6Receive()

6Reply()

7Reply-driven messaging

7Additional points to remember

8Advanced facilities

8Conditional message reception

9Reading or writing part of a message

9Multipart messages

10Reserved message codes

10IPC via proxies

11IPC via signals

11Generating signals

11Receiving signals

12Summary of signals

12Defining signal processing

13Catching signals

13Blocking signals

13Signals and messages

14IPC across the network

14Virtual circuits

14Virtual processes

15Virtual proxies

16Terminating virtual circuits

17IPC via semaphores

17Process scheduling

17When scheduling decisions are made

17Process priorities

18Scheduling methods

19FIFO scheduling

20Round-robin scheduling

21Adaptive scheduling

21Client-driven priority

22A word about realtime performance

22Interrupt latency

23Til on various CPUs

23Scheduling latency

24Tsl on various CPUs

24Stacked interrupts

The Microkernel

This chapter covers the following topics:

· Introduction

· Interprocess communication

· IPC via messages

· IPC via proxies

· IPC via signals

· IPC across the network

· IPC via semaphores

· Process scheduling

· A word about realtime performance

Introduction

The QNX Microkernel is responsible for the following:

· IPC - the Microkernel supervises the routing of messages; it also manages two other forms of IPC: proxies and signals

· low-level network communication - the Microkernel delivers all messages destined for processes on other nodes

· process scheduling - the Microkernel's scheduler decides which process will execute next

· first-level interrupt handling - all hardware interrupts and faults are first routed through the Microkernel, then passed on to the appropriate driver or system manager

[image: image1.png]intertace

Scheduler

nterrugt
rediredtor

Network media

Hardvare
intermpts

Inside the QNX Microkernel.
Interprocess communication

The QNX Microkernel supports three essential types of IPC: messages, proxies, and signals.

· Messages - the fundamental form of IPC in QNX. They provide synchronous communication between cooperating processes where the process sending the message requires proof of receipt and potentially a reply to the message.

· Proxies - a special form of message. They're especially suited for event notification where the sending process doesn't need to interact with the recipient.

· Signals - a traditional form of IPC. They're used to support asynchronous interprocess communication.

IPC via messages

In QNX, a message is a packet of bytes that's synchronously transmitted from one process to another. QNX attaches no meaning to the content of a message. The data in a message has meaning for the sender and for the recipient, but for no one else.

Message-passing primitives

To communicate directly with one another, cooperating processes use these C language functions:

	C Function:
	Purpose:

	Send()
	to send messages

	Receive()
	to receive messages

	Reply()
	to reply to processes that have sent messages

These functions may be used locally or across the network.

Note also that unless processes want to communicate directly with each other, they don't need to use Send(), Receive(), and Reply(). The QNX C Library is built on top of messaging - processes use messaging indirectly when they use standard services, such as pipes.

[image: image2.png]Time.

Pracess Pracess
o B

& serep)

Receivep
send data transmitted

reply datatransmitter

Process A sends a message to Process B, which subsequently receives, processes, then replies to the message.
The above illustration outlines a simple sequence of events in which two processes, Process A and Process B, use Send(), Receive(), and Reply() to communicate with each other:

1. Process A sends a message to Process B by issuing a Send() request to the Microkernel. At this point, Process A becomes SEND-blocked until Process B issues a Receive() to receive the message.

2. Process B issues a Receive() and receives Process A's waiting message. Process A changes to a REPLY-blocked state. Since a message was waiting, Process B doesn't block.

(Note that if Process B had issued the Receive() before a message was sent, it would become RECEIVE-blocked until a message arrived. In this case, the sender would immediately go into the REPLY-blocked state when it sent its message.)

3. Process B completes the processing associated with the message it received from Process A and issues a Reply(). The reply message is copied to Process A, which is made ready to run. A Reply() doesn't block, so Process B is also ready to run. Who runs depends on the relative priorities of Process A and Process B.

Process synchronization

Message passing not only allows processes to pass data to each other, but also provides a means of synchronizing the execution of several cooperating processes.

Let's look at the above illustration again. Once Process A issues a Send() request, it's unable to resume execution until it has received the reply to the message it sent. This ensures that the processing performed by Process B for Process A is complete before Process A can resume executing. Moreover, once Process B has issued its Receive() request, it can't continue processing until it receives another message.

	[image: image3.png]

	For details on how QNX schedules processes, see "Process scheduling" in this chapter.

Blocked states

When a process isn't allowed to continue executing - because it must wait for some part of the message protocol to end - the process is said to be blocked.

The following table summarizes the blocked states of processes:

	If a process has issued a:
	The process is:

	Send() request, and the message it has sent hasn't yet been received by the recipient process
	SEND-blocked

	Send() request, and the message has been received by the recipient process, but that process hasn't yet replied
	REPLY-blocked

	Receive() request, but hasn't yet received a message
	RECEIVE-blocked

[image: image4.png]SEND
blacked

semyp | Receiel

REPLY
blacked

Sendt) This process
Sendy Other process

A process undergoing state changes in a typical send-receive-reply transaction.

	[image: image5.png]

	For information on all possible process states, see Chapter 3, "The Process Manager."

Using Send(), Receive(), and Reply()
Let's now take a closer look at the Send(), Receive(), and Reply() function calls. We'll stay with our example of Process A and Process B.

Send()
Let's assume Process A issues a request to send a message to Process B. It issues the request by means of a Send() function call:

Send(pid, smsg, rmsg, smsg_len, rmsg_len);

The Send() call contains these arguments:

pid

the process ID of the process that is to receive the message (i.e. Process B); a pid is the identifier by which the process is known to the operating system and to other processes

smsg

the message buffer (i.e. the message to be sent)

rmsg

the reply buffer (will contain the reply from Process B)

smsg_len

the length of the message being sent

rmsg_len

the maximum length of the reply that Process A will accept

Note that no more than smsg_len bytes will be sent, and no more than rmsg_len bytes will be accepted in the reply - this ensures that buffers aren't accidentally overwritten.

Receive()
Process B can receive the Send() issued from Process A by issuing a Receive() call:

pid = Receive(0, msg, msg_len);

The Receive() call contains these arguments:

pid

the process ID of the process that sent the message (i.e. Process A) is returned

0

(zero) specifies that Process B is willing to accept a message from any process

msg

the buffer where the message will be received

msg_len

the maximum amount of data that will be accepted in the receive buffer

If the smsg_len in the Send() call and the msg_len in the Receive() call differ in size, the smaller of the two determines the amount of data that will be transferred.

Reply()
Having successfully received the message from Process A, Process B should reply to Process A by issuing a Reply() function call:

Reply(pid, reply, reply_len);

The Reply() call contains these arguments:

pid

the process ID of the process to which the reply is directed (i.e. Process A)

reply

the reply buffer

reply_len

the length of the data to be transmitted in the reply

If the reply_len in the Reply() call and the rmsg_len in the Send() call differ in size, the smaller of the two determines how much data will be transferred.

Reply-driven messaging

The messaging example we just looked at illustrates the most common use of messaging - that in which a server process is normally RECEIVE-blocked for a request from a client in order to perform some task. This is called send-driven messaging: the client process initiates the action by sending a message, and the action is finished by the server replying to the message.

Although not as common as send-driven messaging, another form of messaging is also possible - and often desirable - to use: reply-driven messaging, in which the action is initiated with a Reply() instead. Under this method, a "worker" process sends a message to the server indicating that it's available for work. The server doesn't reply immediately, but rather "remembers" that the worker has sent an arming message. At some future time, the server may decide to initiate some action by replying to the available worker process. The worker process will do the work, then finish the action by sending a message containing the results to the server.

Additional points to remember

Here are some more things to keep in mind about message passing:

· The message data is maintained in the sending process until the receiver is ready to process the message. There is no copying of the message into the Microkernel. This is safe since the sending process is SEND-blocked and is unable to inadvertently modify the message data.

· The message reply data is copied from the replying process to the REPLY-blocked process as an atomic operation when the Reply() request is issued. The Reply() doesn't block the replying process - the REPLY-blocked process becomes unblocked after the data is copied into its space.

· The sending process doesn't need to know anything about the state of the receiving process before sending a message. If the receiving process isn't prepared to receive a message when the sending process issues it, the sending process simply becomes SEND-blocked.

· If necessary, a process can send a zero-length message, a zero-length reply, or both.

· From the developer's point of view, issuing a Send() to a server process to get a service is virtually identical to calling a library subroutine to get the same service. In either case, you set up some data structures, then make the Send() or the library call. All of the service code between two well-defined points - Receive() and Reply() for a server process, function entry and return statement for a library call - then executes while your code waits. When the service call returns, your code "knows" where results are stored and can proceed to check for error conditions, process results, or whatever.

Despite this apparent simplicity, the code does much more than a simple library call. The Send() may transparently go across the network to another machine where the service code actually executes. It can also exploit parallel processing without the overhead of creating a new process. The server process can issue a Reply(), allowing the caller to resume execution as soon as it is safe to do so, and meanwhile continue its own execution.

· There may be messages outstanding from many processes for a single receiving process. Normally, the receiving process receives the messages in the order they were sent by other processes; however, the receiving process can specify that messages be received in an order based on the priority of the sending processes.

[image: image6.png]t

Message C

Message D

REPLY blocked

Message E

Server has received (but not replied to) messages from Client A and Client B. Server has not yet received messages from Client C, Client D, and Client E.
Advanced facilities

QNX also provides these advanced message-passing facilities:

· conditional message reception

· reading or writing part of a message

· multipart messages

Conditional message reception

Generally, when a process wants to receive messages, it uses Receive() to wait for a message to arrive. This is the normal way of receiving messages and is appropriate in most circumstances.

In some cases, however, a process may need to determine whether messages are pending, yet may not want to become RECEIVE-blocked in the absence of a pending message. For example, a process needs to poll a free-running device at high speed - the device isn't capable of generating interrupts - but the process still has to respond to messages from other processes. In this case, the process could use the Creceive() function to read a message, if one became available, yet return immediately if no further messages were pending.

	[image: image7.png]

	You should avoid Creceive(), if possible, since it allows a process to consume the processor continuously at its priority level.

Reading or writing part of a message

Sometimes it's desirable to read or write only part of a message at a time so that you can use the buffer space already allocated for the message instead of allocating a separate work buffer.

For example, an I/O manager may accept messages of data to be written that consist of a fixed-size header followed by a variable amount of data. The header contains the byte count of the data (0 to 64K bytes). The I/O manager may elect to receive only the header and then use the Readmsg() function to read the variable-length data directly into an appropriate output buffer. If the sent data exceeds the size of the I/O manager's buffer, the manager may issue several Readmsg() requests over time to transfer the data as space becomes available. Likewise, the Writemsg() function can be used to collect data over time and copy it back to the sender's reply buffer as it becomes available, thus reducing the I/O manager's internal buffer requirements.

Multipart messages

Up to now, messages have been discussed as single packets of bytes. However, messages often consist of two or more discrete components. For example, a message may have a fixed-length header followed by a variable amount of data. To ensure that its components will be efficiently sent or received without being copied into a temporary work buffer, a multipart message can be constructed from two or more separate message buffers. This facility helps QNX I/O managers, such as Dev and Fsys, achieve their high performance.

The following functions are available to handle multipart messages:

· Creceivemx()

· Readmsgmx()

· Receivemx()

· Replymx()

· Sendmx()

· Writemsgmx()

[image: image8.png]me
contral
structure

Multi-part message

Part1

bz |

Part 1

| f

Trly

Multipart messages can be specified with an mx control structure. The Microkernel assembles these into a single data stream.
Reserved message codes

Although you aren't required to do so, QNX begins all of its messages with a 16-bit word called a message code. Note that QNX system processes use message codes in the following ranges:

	Reserved range:
	Description:

	0x0000 to 0x00FF
	Process Manager messages

	0x0100 to 0x01FF
	I/O messages (common to all I/O servers)

	0x0200 to 0x02FF
	Filesystem Manager messages

	0x0300 to 0x03FF
	Device Manager messages

	0x0400 to 0x04FF
	Network Manager messages

	0x0500 to 0x0FFF
	Reserved for future QNX system processes

IPC via proxies

A proxy is a form of non-blocking message especially suited for event notification where the sending process doesn't need to interact with the recipient. The only function of a proxy is to send a fixed message to a specific process that owns the proxy. Like messages, proxies work across the network.

By using a proxy, a process or an interrupt handler can send a message to another process without blocking or having to wait for a reply.

Here are some examples of when proxies are used:

· A process wants to notify another process that an event has occurred, but can't afford to send a message (which would cause it to become blocked until the recipient issues a Receive() and a Reply()).

· A process wants to send data to another process, but needs neither a reply nor any other acknowledgment that the recipient has received the message.

· An interrupt handler wants to tell a process that some data is available for processing.

Proxies are created with the qnx_proxy_attach() function. Any other process or any interrupt handler that knows the identification of the proxy can then cause the proxy to deliver its predefined message by using the Trigger() function. The Microkernel handles the Trigger() request.

A proxy can be triggered more than once - it sends a message for each time it's triggered. A proxy process can queue up to 65,535 messages for delivery.

[image: image9.png]Canned
message

Carned
message

Carned
message

¥

A client process triggers a proxy three times, which causes the server to receive three "canned" messages from the proxy.
IPC via signals

Signals are a traditional method of asynchronous communication that have been available for many years in a variety of operating systems.

QNX supports a rich set of POSIX-compliant signals, some historical UNIX signals, as well as some QNX-specific signals.

Generating signals

A signal is considered to have been delivered to a process when the process-defined action for that signal is taken. A process can set a signal on itself.

	If you want to:
	Use the:

	Generate a signal from the shell
	kill or slay utilities

	Generate a signal from within a process
	kill() or raise() C functions

Receiving signals

A process can receive a signal in one of three ways, depending on how it has defined its signal-handling environment:

· If the process has taken no special action to handle signals, the default action for the signal is taken - usually, this default action is to terminate the process.

· The process can ignore the signal. If a process ignores a signal, there's no effect on the process when the signal is delivered (note that the SIGCONT, SIGKILL, and SIGSTOP signals can't be ignored under normal circumstances).

· The process can provide a signal handler for the signal - a signal handler is a function in the process that is invoked when the signal is delivered. When a process contains a signal handler for a signal, it is said to be able to "catch" the signal. Any process that catches a signal is, in effect, receiving a form of software interrupt. No data is transferred with the signal.

Between the time that a signal is generated and the time that it's delivered, the signal is said to be pending. Several distinct signals can be pending for a process at a given time. Signals are delivered to a process when the process is made ready to run by the Microkernel's scheduler. A process should make no assumptions about the order in which pending signals are delivered.

Summary of signals

	Signal:
	Description:

	SIGABRT
	Abnormal termination signal such as issued by the abort() function.

	SIGALRM
	Timeout signal such as issued by the alarm() function.

	SIGBUS
	Indicates a memory parity error (QNX-specific interpretation). Note that if a second fault occurs while your process is in a signal handler for this fault, the process will be terminated.

	SIGCHLD
	Child process terminated. The default action is to ignore the signal.

	SIGCONT
	Continue if HELD. The default action is to ignore the signal if the process isn't HELD.

	SIGDEV
	Generated when a significant and requested event occurs in the Device Manager

	SIGFPE
	Erroneous arithmetic operation (integer or floating point), such as division by zero or an operation resulting in overflow. Note that if a second fault occurs while your process is in a signal handler for this fault, the process will be terminated.

	SIGHUP
	Death of session leader, or hangup detected on controlling terminal.

	SIGILL
	Detection of an invalid hardware instruction. Note that if a second fault occurs while your process is in a signal handler for this fault, the process will be terminated.

	SIGINT
	Interactive attention signal (Break)

	SIGKILL
	Termination signal - should be used only for emergency situations. This signal cannot be caught or ignored. Note that a server with superuser privileges may protect itself from this signal via the qnx_pflags() function.

	SIGPIPE
	Attempt to write on a pipe with no readers.

	SIGPWR
	Soft boot requested via Ctrl -Alt -Shift -Del or shutdown utility.

	SIGQUIT
	Interactive termination signal.

	SIGSEGV
	Detection of an invalid memory reference. Note that if a second fault occurs while your process is in a signal handler for this fault, the process will be terminated.

	SIGSTOP
	HOLD process signal. The default action is to hold the process. Note that a server with superuser privileges may protect itself from this signal via the qnx_pflags() function.

	SIGTERM
	Termination signal

	SIGTSTP
	Not supported by QNX.

	SIGTTIN
	Not supported by QNX.

	SIGTTOU
	Not supported by QNX.

	SIGUSR1
	Reserved as application-defined signal 1

	SIGUSR2
	Reserved as application-defined signal 2

	SIGWINCH
	Window size changed

Defining signal processing

To define the type of handling you want for each signal, you use the ANSI C signal() function or the POSIX sigaction() function.

The sigaction() function gives you greater control over the signal-handling environment.

You may change the type of handling for a signal at any time. If you set the signal handling for a function to ignore the signal, any pending signals of that type will be immediately discarded.

Catching signals

Some special considerations apply to processes that catch signals with a signal-handling function.

The signal-handling function is similar to a software interrupt. It is executed asynchronously to the rest of the process. Therefore, it's possible for a signal handler to be entered while any function in the program is running (including library functions).

If your process doesn't return from the signal handler, it can use either siglongjmp() or longjmp(), but siglongjmp() is preferred. With longjmp(), the signal remains blocked.

Blocking signals

Sometimes you may want to temporarily prevent a signal from being delivered, without changing the method of how the signal is handled when it is delivered. QNX provides a set of functions that let you block delivery of signals. A signal that is blocked remains pending; once unblocked, it is delivered to your program.

While your process is executing a signal handler for a particular signal, QNX automatically blocks that signal. This means that you don't have to worry about setting up nested invocations of your handler. Each invocation of your signal handler is an atomic operation with respect to the delivery of further signals of that type. If your process returns normally from the handler, the signal is automatically unblocked.

	[image: image10.png]

	Some UNIX systems have a flawed implementation of signal handlers in that they reset the signal to the default action rather than block the signal. As a result, some UNIX applications call the signal() function within the signal handler to re-arm the handler. This has two windows of failure. First, if another signal arrives while your program is in the handler but before signal() is called, your program may be killed. Second, if a signal arrives just after the call to signal() in the handler, you might enter your handler recursively. QNX supports signal blocking and therefore avoids these problems. You don't need to call signal() within your handler. If you leave your handler via a long jump, you should use the siglongjmp() function.

Signals and messages

There's an important interaction between signals and messages. If your process is SEND-blocked or RECEIVE-blocked when a signal is generated - and you have a signal handler - the following actions occur:

1. The process is unblocked.

2. Signal-handling processing takes place

3. The Send() or Receive() returns with an error

If your process was SEND-blocked at the time, this doesn't represent a problem, because the recipient wouldn't have received a message. But if your process was REPLY-blocked, you won't know whether the sent message had been handled or not, and therefore won't know whether to retry the Send().

It's possible for a process acting as a server (i.e. it is receiving messages) to ask that it be notified when a client process is signaled while in the REPLY-blocked state. In this case, the client process is made SIGNAL-blocked with a pending signal and the server process receives a special message describing the type of signal. The server process can then decide to do either of the following:

· Complete the original request normally - the sender is assured that the message was handled properly.

OR

· Release any resources tied up and return an error indicating that the process was unblocked by a signal - the sender receives a clear-error indication.

When the server replies to a process that was SIGNAL-blocked, the signal will take effect immediately after the sender's Send() returns.

IPC across the network

Virtual circuits

A QNX application can talk to a process on another computer on the network just as if it were talking to another process on the same machine. As a matter of fact, from the application's perspective, there's no difference between a local and remote resource.

This remarkable degree of transparency is made possible by virtual circuits (VCs), which are paths the Network Manager provides to transmit messages, proxies, and signals across the network.

VCs contribute to efficient overall use of resources in a QNX network for several reasons:

1. When a VC is created, it's given the ability to handle messages up to a specified size; this means you can preallocate resources to handle the message. Nevertheless, if you need to send a message larger than the maximum specified size, the VC is automatically resized to accommodate the larger message.

2. If two processes residing on different nodes are communicating with each other via more than one VC, the VCs are shared - only one real virtual circuit exists between the processes. This situation occurs commonly when a process accesses several files on a remote filesystem.

3. If a process attaches to an existing shared VC and it requests a buffer size larger than that currently in use, the buffer size is automatically increased.

4. When a process terminates, its associated VCs are automatically released.

Virtual processes

A sending process is responsible for setting up the VC between itself and the process it wants to communicate with. To do so, the sending process usually issues a qnx_vc_attach() function call. In addition to creating a VC, this call also creates a virtual process ID, or VID, at each end of the circuit. To the process at either end of the virtual circuit, the VID on its end appears to have the process ID of the remote process it wants to communicate with. Processes communicate with each other via these VIDs.

For example, in the following illustration, a virtual circuit connects PID 1 to PID 2. On node 20 - where PID 1 resides - a VID represents PID 2. On node 40 - where PID 2 resides - a VID represents PID 1. Both PID 1 and PID 2 can refer to the VID on their node as if it were any other local process (sending messages, receiving messages, raising signals, waiting, etc.). So, for example, PID 1 can send a message to the VID on its end, and this VID will relay the message across the network to the VID representing PID 1 on the other end. This VID will then route the message to PID 2.

[image: image11.png]HMode 40

MNode 20

Network communications is handled with virtual circuits. When PID 1 sends to VID 2, the send request is relayed across the virtual circuit causing VID 1 to send to PID 2.
Each VID maintains a connection that contains the following information:

· local pid

· remote pid

· remote nid (node ID)

· remote vid

You probably won't come into direct contact with VCs very often. For example, when an application wants to access an I/O resource across the network, a VC is created by the open() library function on the application's behalf. The application has no direct part in the creation or use of the VC. Again, when an application establishes the location of a server with qnx_name_locate(), a VC is automatically created on behalf of the application. To the application, the VC simply appears to be a PID.

For more information on qnx_name_locate(), see the discussion of process symbolic names in Chapter 3.

Virtual proxies

A virtual proxy allows a proxy to be triggered from a remote node, much like a virtual circuit allows a process to exchange messages with a remote node.

Unlike a virtual circuit, which binds two processes together, a virtual proxy allows any process on the remote node to trigger it.

Virtual proxies are created by qnx_proxy_rem_attach(), which takes a node (nid_t) and proxy (pid_t) as arguments. A virtual proxy is created on the remote node, which refers to the proxy on the caller's node.

[image: image12.png]Mode 40

Mode 20

A virtual proxy is created on the remote node, which refers to the proxy on the caller's node.
Note that the virtual circuit is created automatically on the caller's node by qnx_proxy_rem_attach().

Terminating virtual circuits

A process might become unable to communicate over an established VC for various reasons:

· The computer it was running on was powered down.

· The network cable to the computer was disconnected.

· The remote process it was communicating with was terminated.

Any of these conditions can prevent messages from being transmitted over a VC. It's necessary to detect these situations so that applications can take remedial action or terminate themselves gracefully. If this isn't done, valuable resources can be unnecessarily tied up.

The Process Manager on each node checks the integrity of the VCs on its node. It does this as follows:

1. Each time a successful transmission takes place on a VC, a time stamp associated with the VC is updated to indicate the time of last activity.

2. At installation-defined intervals, the Process Manager looks at each VC. If there's been no activity on a circuit, the Process Manager sends a network integrity packet to the Process Manager on the node at the other end of the circuit.

3. If no response comes back, or if a problem is indicated, the VC is flagged as having a problem. An installation-defined number of attempts are then made to re-establish contact.

4. If the attempts fail, the VC is dismantled; any process blocked on the VC is made READY. (The process sees a failure return code from the communication primitive on the VC.)

To control parameters related to this integrity check, you use the netpoll utility.

IPC via semaphores

Semaphores are another common form of synchronization that allows processes to "post" (sem_post()) and "wait" (sem_wait()) on a semaphore to control when processes wake or sleep. The post operation increments the semaphore; the wait operation decrements it.

If you wait on a semaphore that's positive, you won't block. Waiting on a non-positive semaphore will block until some other process executes a post. It's valid to post one or more times before a wait - this will allow one or more processes to execute the wait without blocking.

A significant difference between semaphores and other synchronization primitives is that semaphores are "async safe" and can be manipulated by signal handlers. If the desired effect is to have a signal handler wake a process, semaphores are the right choice.

Process scheduling

When scheduling decisions are made

The Microkernel's scheduler makes scheduling decisions when:

· a process becomes unblocked

· the timeslice for a running process expires

· a running process is preempted

Process priorities

In QNX, every process is assigned a priority. The scheduler selects the next process to run by looking at the priority assigned to every process that is READY (a READY process is one capable of using the CPU). The process with the highest priority is selected to run.

[image: image13.png]Frority

El

0

Feady
ausue

T adie

5 Pracess
’

oz
4""‘

. Process) _, (Process
["Q 4"
fProcess
z

Blacked

The ready queue for six processes (A-F) which are READY. All other processes (G-Z) are BLOCKED. Process A is currently running. Processes A, B, and C are at the highest priority, so will share the processor based on the running process's scheduling algorithm.
The priorities assigned to processes range from 0 (the lowest) to 31 (the highest). The default priority for a new process is inherited from its parent; this is normally set to 10 for applications started by the Shell.

	If you want to:
	Use this function:

	Determine the priority of a process
	getprio()

	Set the priority of a process
	setprio()

Scheduling methods

To meet the needs of various applications, QNX provides three scheduling methods:

· FIFO scheduling

· round-robin scheduling

· adaptive scheduling

Each process on the system may run using any one of these methods. They are effective on a per-process basis, not on a global basis for all processes on a node.

Remember that these scheduling methods apply only when two or more processes that share the same priority are READY (i.e. the processes are directly competing with each other). If a higher-priority process becomes READY, it immediately preempts all lower-priority processes.

In the following diagram, three processes of equal priority are READY. If Process A blocks, Process B will run.

[image: image14.png]=~ s (Process
0
Blocked

Process A blocks, Process B runs.
Although a process inherits its scheduling method from its parent process, you can change the method.

	If you want to:
	Use this function:

	Determine the scheduling method for a process
	getscheduler()

	Set the scheduling method for a process
	setscheduler()

FIFO scheduling

In FIFO scheduling, a process selected to run continues executing until it:

· voluntarily relinquishes control (e.g. it makes any kernel call)

· is preempted by a higher-priority process

[image: image15.png]Ready.
e

active

L5 (process) _ (Process
[\ B)

FIFO scheduling. Process A runs until it blocks.
Two processes that run at the same priority can use FIFO scheduling to ensure mutual exclusion to a shared resource. Neither process will be preempted by the other while it is executing. For example, if they shared a memory segment, each of the two processes could update the segment without resorting to some form of semaphoring.

Round-robin scheduling

In round-robin scheduling, a process selected to run continues executing until it:

· voluntarily relinquishes control

· is preempted by a higher-priority process

· consumes its timeslice

[image: image16.png]Ready
cuete

Process
a

Round-robin scheduling. Process A ran until it consumed its timeslice; the next READY process (Process B) now runs.
A timeslice is the unit of time assigned to every process. Once it consumes its timeslice, a process is preempted and the next READY process at the same priority level is given control. A timeslice is 50 milliseconds.

	[image: image17.png]

	Apart from time slicing, round-robin scheduling is identical to FIFO scheduling.

Adaptive scheduling

In adaptive scheduling, a process behaves as follows:

· If the process consumes its timeslice (i.e. it doesn't block), its priority is reduced by 1. This is known as priority decay. Note that a "decayed" process won't continue decaying, even if it consumes yet another timeslice without blocking - it will drop only one level below its original priority.

· If the process blocks, it immediately reverts to its original priority.

[image: image18.png]Ready
quee

active

| > (process) .,
" B
1 N
~,

L, {process
0

Adaptive scheduling. Process A consumed its timeslice; its priority was then dropped by 1. The next READY process (Process B) runs.
You can use adaptive scheduling in environments where potentially compute-intensive background processes are sharing the computer with interactive users. You should find that adaptive scheduling gives the compute-intensive processes sufficient access to the CPU, yet retains fast interactive response for other processes.

Adaptive scheduling is the default scheduling method for programs created by the Shell.

Client-driven priority

In QNX, most transactions between processes follow a client/server model. Servers provide some form of service and clients send messages to these servers to request service. In general, servers are more trusted and vital than clients.

Clients usually outnumber servers. As a result, a server will likely run at a priority that exceeds the priorities of all its clients. The scheduling method may be any of the three previously described, but round-robin is probably the most common.

If a low-priority client sends a message to the server, then its request will by default be handled at the higher priority of the server. This has indirectly boosted the priority of the client, because the client's request is what causes the server to run.

As long as the server runs for a short period of time to satisfy the request, this usually isn't a concern. If the server runs for a more extended period, then a low-priority client may adversely affect other processes at priorities higher than the client but lower than the server.

To solve this dilemma, a server may elect to have its priority driven by the priority of the clients that send it messages. When the server receives a message, its priority will be set to that of the client. Note that only its priority is changed - its scheduling method stays the same. If another message arrives while the server is running, the server's priority will be boosted if the new client's priority is greater than the server's. In effect, the new client "turbocharges" the server to its priority, allowing it to finish the current request so it can handle the new client's request. If this weren't done, the new client would have its priority lowered as it blocked on a lower-priority server.

If you select client-driven priorities for your server, you should also request that messages be delivered in priority order (as opposed to time order).

To enable client-driven priority, you use the qnx_pflags() function as follows:

qnx_pflags(~0, _PPF_PRIORITY_FLOAT

 | _PPF_PRIORITY_REC, 0, 0);

A word about realtime performance

No matter how much we wish it were so, computers are not infinitely fast. In a realtime system, it's absolutely crucial that CPU cycles aren't unnecessarily spent. It's also crucial that you minimize the time it takes from the occurrence of an external event to the actual execution of code within the program responsible for reacting to that event. This time is referred to as latency.

Several forms of latency are encountered in a QNX system.

Interrupt latency

Interrupt latency is the time from the reception of a hardware interrupt until the first instruction of a software interrupt handler is executed. QNX leaves interrupts fully enabled almost all the time, so that interrupt latency is typically insignificant. But certain critical sections of code do require that interrupts be temporarily disabled. The maximum such disable time usually defines the worst-case interrupt latency - in QNX this is very small.

The following diagrams illustrate the case where a hardware interrupt is processed by an established interrupt handler. The interrupt handler either will simply return, or it will return and cause a proxy to be triggered.

[image: image19.png]Interrupt handler Interrupt handler

runs. frishes

Irtemupt Inermipted process

ocours cortinues execution
¥ ¥

> Time

T

Ty intrrupt tency
Tit Intertuptprcness g time
Typ intermpt termingtion time.

Interrupt handler simply terminates.
The interrupt latency (Til) in the above diagram represents the minimum latency - that which occurs when interrupts were fully enabled at the time the interrupt occurred. Worst-case interrupt latency will be this time plus the longest time in which QNX, or the running QNX process, disables CPU interrupts.

Til on various CPUs

The following table shows typical interrupt-latency times (Til) for a range of processors:

	Interrupt latency (Til):
	Processor:

	3.3 microsec
	166 MHz Pentium

	4.4 microsec
	100 MHz Pentium

	5.6 microsec
	100 MHz 486DX4

	22.5 microsec
	33 MHz 386EX

Scheduling latency

In some cases, the low-level hardware interrupt handler must schedule a higher-level process to run. In this scenario, the interrupt handler will return and indicate that a proxy is to be triggered. This introduces a second form of latency - scheduling latency - which must be accounted for.

Scheduling latency is the time between the termination of an interrupt handler and the execution of the first instruction of a driver process. This usually means the time it takes to save the context of the currently executing process and restore the context of the required driver process. Although larger than interrupt latency, this time is also kept small in a QNX system.

[image: image20.png]Intemupt handier
Interrupt Intorrupt hancler _finishes,
ocaurs nins riggering a proxy

! ! !

Driver process

!

T T e N T

it

Ty inerrupt Istncy
Tint intetrupt proosesing time.
Ty scheduling kncy

>

> Time

Interrupt handler terminates, triggering a proxy.
It's important to note that most interrupts terminate without triggering a proxy. In a large number of cases, the interrupt handler can take care of all hardware-related issues. Triggering a proxy to kick a higher-level driver process occurs only when a significant event occurs. For example, the interrupt handler for a serial device driver would feed one byte of data to the hardware upon each received transmit interrupt, and would trigger the higher-level process (Dev) only when the output buffer is finally empty.

Tsl on various CPUs

This table shows typical scheduling-latency times (Tsl) for a range of processors:

	Scheduling latency (Tsl):
	Processor:

	4.7 microsec
	166 MHz Pentium

	6.7 microsec
	100 MHz Pentium

	11.1 microsec
	100 MHz 486DX4

	74.2 microsec
	33 MHz 386EX

Stacked interrupts\\
Since microcomputer architectures allow hardware interrupts to be given priorities, higher-priority interrupts can preempt a lower-priority interrupt.

This mechanism is fully supported in QNX. The previous scenarios describe the simplest - and most common - situation where only one interrupt occurs. Substantially similar timing is true for the highest-priority interrupt. Worst-case timing considerations for lower-priority interrupts must take into account the time for all higher-priority interrupts to be processed, since in QNX, a higher-priority interrupt will preempt a lower-priority interrupt.

[image: image21.png]Time

>
Process A [;|
| processc]
r
ProcessB]
;
", —
]

Process A is running. Interrupt IRQx causes interrupt handler Intx to run, which is preempted by IRQy and its handler Inty. Inty triggers a proxy causing Process B to run; Intx triggers a proxy causing Process C to run.

	[image: image22.png]

	

	[image: image23.png]

	

	[image: image24.png]

	

	[image: image25.png]

